Name of the Course: Linear Algebra

Syllabus:

Unit I

Symmetric and Skew symmetric matrices - Hermitian and Skew Hermitian Matrices

- Orthogonal and Unitary matrices - Rank of matrix - Eigen values and Eigen vectors of Linear operators - Cayley Hamilton theorem - Solutions of Homogeneous linear equations - Solutions of non homogenuous linear equations.

Section: 1.3 Orthogonal and Unitary matrices

Definition 1.3.1: Orthogonal Matrix

A real matrix P of order n is called an unitary matrix is it satisfies the condition $P P^{T}=I_{n}$.

Problem 1.3.2: Identify the type of the matrix $P=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)$.

$$
\begin{aligned}
& P P^{T}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
\cos 2+\sin ^{2} \alpha & -\sin \alpha \cos \alpha+\sin \alpha \cos \alpha \\
-\sin \alpha \cos \alpha+\sin \alpha \cos \alpha & \cos ^{2} \alpha+\sin ^{2} \alpha
\end{array}\right) \\
&=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
\end{aligned}
$$

Since $P P^{T}=I_{2}$, the given matrix is orthogonal.

Definition 1.3.3: Unitary Matrix

A Complex matrix U of order n is called an unitary matrix is it satisfies the condition $U U^{*}=I_{n}$

Problem 1.3.4: Show that $U=\frac{1}{5}\left(\begin{array}{cc}-1+2 i & -4-2 i \\ 2-4 i & -2-i\end{array}\right)$ is unitary matrix.

Solution:

Given that $U=\frac{1}{5}\left(\begin{array}{cc}-1+2 i & -4-2 i \\ 2-4 i & -2-i\end{array}\right) \Rightarrow U^{*}=\frac{1}{5}\left(\begin{array}{ll}-1-2 i & 2+4 i \\ -4+2 i & -2+i\end{array}\right)$
Also $U U^{*}=\frac{1}{5}\left(\begin{array}{cc}-1+2 i & -4-2 i \\ 2-4 i & -2-i\end{array}\right) \frac{1}{5}\left(\begin{array}{cc}-1-2 i & 2+4 i \\ -4+2 i & -2+i\end{array}\right)=\frac{1}{25}\left(\begin{array}{cc}25 & 0 \\ 0 i & 25\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I_{2}$

Since $U U^{*}=I_{2}$, the given matrix is Unitary Matrix

